|
|
|
|
|
Q - WHAT ARE THE ADVANTAGES OF MAGNETIC DRIVE VERSUS TRADITIONAL SHAFT SEALS?
A - Magnetic couplings eliminate rotating seals and a potential source of wear and contamination, besides reducing the power consumption and increasing the life of the pump. Use magnetic couplings when seal failure could cause environmental or hygiene problems. They are also more reliable when high system pressure is involved.
Q - HOW CAN I DETERMINE THE PUMP INPUT POWER?
A - SOVOFLO can calculate the input power required based on your duty requirements and fluid characteristics.
Q - WHAT NOISE LEVEL DO THE PUMPS EMIT?
A - Noise levels are dependant on mounting of the pumps, motor speeds/types and fluid types. There are infinite combinations. A reference value at 3 bar of differential pressure, 3000 rpm of speed, is 48 dB at 1 meter (for gear pumps).
Q - WHAT MOUNTING OPTIONS ARE AVAILABLE?
A - A number of mounting options are available depending on the motor/drive requirements, including compatibility with most standard frame sizes. Please contact Fluid-o-Tech for further information.
Q - CAN LIQUIDS CONTAINING SOLIDS BE PUMPED?
A - Only through the internal gear pumps.
Q - CAN THE PUMP BE RUN IN REVERSE?
A - Our pumps are optimised for forwards flow but can be run in both directions. However, if a bypass is installed, that will impede reverse performance.
Q - CAN THE PUMP DRY RUN?
A - Not the models with mechanical seal. Pumps with magnetic drive are more tolerant, however dry running should be minimised to avoid damage to bearing surfaces.
Q - WHAT IS CAVITATION?
A - Cavitation is the formation of vapour cavities in a liquid ("bubbles" or "voids") – that are the consequence of the pipe connected to the inlet of the pump which is undersized for the flow rate of the pump. Formation of these cavities is a function of the fluid properties and physical properties of the pumping system (available pressure, temperature, pumping speed…). Cavitation generates noise and premature wear of the pump.
Q - DOES THE PUMP SELF-PRIME?
A - Most of our pumps will self-prime - check data sheets for individual characteristics.
Q - WHAT ARE THE OPERATING TEMPERATURES FOR THE PUMP AND MOTOR?
A - Most of our units will run happily to 80°C (176 °F), some up to 120 °C (248 °F). This is dependent on which model is selected. Beyond that there may be a need for special consideration of magnets, clearances, motor bearings, etc... Consult the factory for higher-temperature applications.
Q - WHAT SYMPTOMS ARE TYPICAL INDICATORS OF AN INEFFICIENT PUMPING SYSTEM?
A - Noise can be a key indicator of a poor pumping system. Excessive noise - particularly on the inlet side - can suggest issues such as cavitation which can dramatically affect efficiency and life. Other indicators are excessive pressure losses through the pipeline, high power consumption by the pump, overheating and vibrations.
Q - WHAT ARE THE EFFECTS OF VISCOSITY ON GEAR PUMP AND SYSTEM PERFORMANCES?
A - Viscosity can be very good for efficiency as thicker fluids have less slip. However, depending on the viscosity, the maximum speed may need to be reduced to prevent excessive loads. Thinner fluids will result in increased slip and reduced efficiency. Consult the factory for details.
Q - HOW CAN I REDUCE THE LEVEL OF EXTRANEOUS NOISE WHEN MEASURING SOUND LEVELS THROUGHOUT A PUMPING SYSTEM?
A - Some noise must be expected. Use of vibration dampeners and isolation damperners will reduce vibration noise at locations of surface contacts. Avoid pipe vibrating against metal surfaces, or motor foot vibrating against metal surface. Plastic piping should be preferred to metal piping for reducing resonance.
Q - WHAT KIND OF GENERAL CONSIDERATIONS SHOULD BE MADE WHEN EVALUATING THE INLET PIPING REQUIREMENTS FOR A PUMP?
A - A pump should have fittings sized for the flow rate needed. Guidance is provided in the instruction manual. If in doubt, please contact a Fluid-o-Tech engineer.
Q - WHAT ARE SOME EFFECTS WHEN A GAS AND LIQUID MIXTURE IS BEING CARRIED THROUGH A GEAR PUMP?
A - A gas/liquid mixture will pass through the pump without any problems. The pump may appear a little noisier as the gas passes through. Also there will be a momentary change in the load on the pump which may be seen through fluctuations in the outlet pressure and power consumed by the motor.
Q - CAN THE PUMP BE SPEED CONTROLLED?
A - Positive displacement pumps deliver a flow proportional to speed. Controlling the motor speed will control the flow rate. Whilst AC motors tend to be fixed speed, most DC and brushless DC motors will offer variable speed capability.
Q - WHAT ARE THE MINIMUM AND MAXIMUM SPEEDS ALLOWABLE?
A - Maximum speeds are stated on the data sheet for each model, however, these figures are based on water. For thicker fluids, maximum speeds will need to be reduced. There is no minimum speed although motor control and slip will be factors in determining lower levels of capability.
Q - WHAT LEVEL OF FILTRATION IS RECOMMENDED?
A - It is recomended to install a 10 microns filter on the inlet of the pump, whose filtrating surface is big enough to avoid pressue drop, in order to protect the pump's internal components.
Q - WHAT AFFECTS THE LIFE OF THE PUMP AND MOTOR?
A - Many factors will affect life. Key issues to consider are the number of stop/start cycles, running speed, load (pressure) and fluid contamination.
Q - HOW CAN WE ADJUST FLOW?
A - With a positive displacement pump, the easiest way to adjust the flow is by adjusting motor speed. There is an almost linear relationship between speed and flow.
Q - WHAT IS THE PRIMING CAPABILITIES OF THE PUMP?
A - Priming performance vary from pump to pump and are dependant on a variety of factors including fluid viscosity, pipe size, vapour pressure, speed and if the pump is wet or dry.
Q - WHAT IS SLIP?
A - Slip is the small portion of fluid that flows back through the pump clearances in the pump and affects efficiency. Thinner fluids pass more easily through these small clearances so the pump will be less efficient with thicker or more viscous fluids.
|
|
|
|
|
|
|
|
|